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Introduction. As is remarked in the Introduction to Part 1,1 my interest in the
theory of Tzitzeica surfaces was sparked by correspondence with Ahmed Sebbar,
reinforced by correspondence with Nicoleta B̂ılă2 and has been informed mainly
by Rogers & Schief.3 In Part 1 I provide a record of my meandering, highly
digressive approach to my intended subject; I look more specifically to

• Mathematics associated generally and specifically with the asymptotic
parameterization of hyperbolic surfaces.
• Application of that material to the unit pseudosphere.

• An elaborate account of the general theory of surfaces of revolution.

• The theory of geodesics on surfaces of revolution.

• The construction of conformal (or “isothermal”) coordinates on such
surfaces.

• Basic elements of the theory of Liouville surfaces.

That obliquely preparatory work came to a halt when I encountered in Rogers
& Schief the unsupported claim—taken by them to be common knowledge/
obvious—that the 2nd Fundamental Form for asymptotically parameterized
hyperbolic surfaces gives rise to a symmetric matrices H(x, y) that invariably

1 “Introduction to the theory of Tzitzeica surfaces. Part 1: Preparatory
remarks,” (April, 2016).

2 See her “Symmetry groups and Lagrangians associated with Tzitzeica
surfaces,” Balkan Journal of Geometry and its Applications 10, 73–91 (2005).
B̂ılă was a student of the Romanian differential geometer Consantin Udrişte
(born in 1940, the year after Txitzeica died) who—now retired—contributed
prolifically to the continuation of the Txitzeica school of differential geometry,
so is herself a “great granddaughter,” so to speak, of the founder of this subject.

3 Chapter 3 in their Bäcklund and Darboux Transformations: Geometry and
Modern Applications in Soliton Theory (2002) is entitled “Tzitzeica Surfaces,
Conjugate Nets and the Toda Lattice Scheme.”
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have 0s on the diagonal; i.e., which are invariably of the form

H(x, y) =
(

0 f(x, y)
f(x, y) 0

)
: {x, y} asymptotic

It is three essays later,4 with the validity of that claim now established, that I
return here to the theory of Tzitzeica surfaces.

General properties of asymptotically parameterized hyperbolic surfaces. Let
rrr(u, v) refer to an arbitrarily parameterized surface Σ. The Gauss equations5
read

rrruu = Γ 1
11rrru + Γ 2

11rrrv + eNNN

rrruv = Γ 1
12rrru + Γ 2

12rrrv + f NNN

rrrvv = Γ 1
22rrru + Γ 2

22rrrv + gNNN





(1)

the Weingarten equations read

NNNu = fF − eG
EG − F 2

rrru + eF − fE
EG − F 2

rrrv

NNNv = gF − fG
EG − F 2

rrru + fF − gE
EG − F 2

rrrv





(2)

and the Mainardi-Codazzi (consistency/integrability) equations read

ev − fu = eΓ 1
12 + f(Γ 2

12 − Γ 1
11) − gΓ 2

11

fv − gu = eΓ 1
22 + f(Γ 2

22 − Γ 1
12) − gΓ 2

12

}
(3)

By way of specialization, assume Σ to be hyperbolic, and the parameterization
to be asymptotic. Then6 e = g = 0 and we have

rrrxx = Γ 1
11rrrx + Γ 2

11rrry

rrrxy = Γ 1
12rrrx + Γ 2

12rrry + f NNN

rrryy = Γ 1
22rrrx + Γ 2

22rrry





(4)

NNNx = fF
EG − F 2

rrrx + −fE
EG − F 2

rrry

NNNy = −fG
EG − F 2

rrrx + fF
EG − F 2

rrry





(5)

−fx = f(Γ 2
12 − Γ 1

11)

fy = f(Γ 2
22 − Γ 1

12)

}
(6)

4 “Biorthogonality—revisited, and a generalized spectral decomposition
theorem,” “Parameter transformations vs. basis transformations,” “Asymptotic
parameterization of the curvature matrix,” all dated June, 2016.

5 See “Differential geometry of some surfaces in 3-space,” (December, 2015),
pages 4–5.

6 See the last of the essays4 cited above.
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The Christoffel symbols Γ i
jk = gimΓmjk = 1

2gim
(
gmj,k + gmk,j − gjk,m

)
= Γ i

kj
are assembled from the first derivatives and inverse of

‖gij‖ =
(

E F
F G

)

and can be described7

Γ 1
11 = g–1

{
1
2GEx − FFx + 1

2FEy

}

Γ 2
11 = g–1

{
− 1

2FEx + EFx − 1
2EEy

}

Γ 1
12 = Γ 1

21 = g–1
{

1
2GEy − 1

2FGx

}

Γ 2
12 = Γ 2

21 = g–1
{
− 1

2FEy + 1
2EGx

}

Γ 1
22 = g–1

{
− 1

2FGy + GFy − 1
2GGx

}

Γ 2
22 = g–1

{
1
2EGy − FFy + 1

2FGx

}






(7)

It proves advantageous in the present context to work from a variant8 of the
Mainardi-Codazzi equations (6) that results from the following argument: We
have the identity

fx + f(Γ 2
12 − Γ 1

11) =
√

g
( f√

g

)

x
+ 1

2fg–1gx + f(Γ 2
12 − Γ 1

11)

But
1
2g–1gx + (Γ 2

12 − Γ 1
11)

= g–1
{

1
2

(
EGx + GEx − 2FFx

)
+

(
1
2EGx − 1

2GEx + FFx − FEx

)}

= g–1
{
− FEy + EGx

}

= 2Γ 2
12

and similarly 1
2g–1gy − (Γ 2

22 − Γ 1
12) = 2Γ 1

12. So equations (6) have become
( f√

g

)

x
+ 2Γ 2

12
f√
g

= 0
( f√

g

)

y
+ 2Γ 1

12
f√
g

= 0





(8)

But the Gaussian curvature is

K = det H
det G = −f2

g
= −

( f√
g

)2
≡ − 1

ρ2

so (8) can be written
[
log

(√
−K

)]
x

+ 2Γ 2
12 = 0

[
log

(√
−K

)]
y

+ 2Γ 1
12 = 0

7 See page 12 in the first of the essays cited on the preceding page.
8 See equations (1.14) and (3.3) in Rogers & Schief.
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or finally
Γ 1

12 = − 1
4

[
log

(
− K

)]
y

Γ 2
12 = − 1

4

[
log

(
− K

)]
x

}
(9)

These equations are quite general, in the sense that they pertain to every
asymptotically parameterized hyperbolic surface.

The unit vector NNN that enters into the construction of the 2nd Fundamental
Form stands normal to Σ at the point rrr, and normal therefore to the plane Π
(spanned by {rrru, rrrv}) that is tangent to Σ at rrr. The dot product

d = NNN···rrr (10.1)

admits therefore of interpretation as the normal (or shortest) distance from the
origin to Π. Generally, d is {u, v}-dependent, because rrr and NNN are.9 One has

du = NNNu···rrr + NNN···rrru = NNNu···rrr (10.2)
dv = NNNv···rrr + NNN···rrrv = NNNv···rrr (10.3)

by NNN ⊥ rrru,v. Equations (10) quantify the projections of rrr onto the linearly
independent (but generally non-orthogonal) vectors (NNN , NNNu, NNNv).

At this point, Rogers & Schief assert (their page 90) that “use of the
Weingarten equations yields

rrr = −(dy/f)rrrx − (dx/f)rrry + dNNN ” (11)

I indicate now how that result can be obtained. Since {NNNx,NNNy} (ditto {rrrx, rrry})
are generally non-orthogonal we are obliged to make use of devices borrowed
from the theory of biorthogonality,10 which supplies

rrr = NNNx(XXX···rrr) + NNNy(YYY ···rrr) + nnn(ZZZ ···rrr)

where {XXX,YYY ,ZZZ } is the non-orthonormal “dual” of the non-orthonormal basis
{NNNx,NNNy, nnn = rrrx× rrry }. In constructing the elements of the dual basis we will
make heavy use of the following elementary vector identities:

(aaa × bbb) × aaa = (aaa···aaa)bbb − (aaa···bbb)aaa
bbb × (aaa × bbb) = (bbb···bbb)aaa − (aaa···bbb)bbb

[(aaa × bbb) × aaa ]···bbb = [bbb × (aaa × bbb)]···aaa = (aaa···aaa)(bbb···bbb) − (aaa···bbb)2 ! 0

(aaa × bbb)···(aaa × bbb) = (aaa···aaa)(bbb···bbb) − (aaa···bbb)2

9 My notation is intended to indicate that the parameterization is arbitrary;
it need not be asymptotic. It is, at the moment, not even required that Σ be
hyperbolic. But in the next paragraph we reinstate the critical assumption that
the parameterization is asymptotic.

10 See “Biorthonality—Revisited,” (June, 2016).
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Look first to the construction of ZZZ. We know from the Weingarten equations
(5) that NNNx and NNNy lie in the tangent plane, so have nnn ⊥ {NNNx,NNNy}: nnn differs
from its dual only by a factor. From

nnn···nnn = (rrrx···rrrx)(rrry···rrry) − (rrrx···rrry)2 = EG − F 2 = det G ≡ g

we achieve (ZZZ···nnn) = 1 by setting

ZZZ = g–1nnn (12.1)

What we have here established is that the unit vector NNN = g−
1
2 nnn is its own

dual. Look next to the construction of XXX. We have xxx ≡ nnn × NNNy ⊥ {nnn,NNNy},
and drawing on (5) obtain

xxx = fg–1(rrrx× rrry) × (−Grrrx + F rrry)
= −fg–1G

[
(rrrx···rrrx)rrry − (rrrx···rrry)rrrx

]
− fg–1F

[
(rrry···rrry)rrrx − (rrrx···rrry)rrry

]

= −fg–1G
[
Errry − F rrrx

]
− fg–1F

[
Grrrx − F rrry

]

= −fg–1(EG − F 2)rrry

= −frrry

So
(xxx···NNNx) = (−frrry)···

[
fg–1(Frrrx − Errry)

]
= −f2g–1(FF − EG) = f2

and to achieve (XXX ···NNNx) = 1 must set

XXX = −f –1rrry (12.2)

A similar argument gives
YYY = −f –1rrrx (12.3)

So we have
rrr = NNNx(XXX···rrr) + NNNy(YYY ···rrr) + NNN(NNN ···rrr)

and its dual
rrr = XXX(NNNx···rrr) + YYY (NNNy···rrr) + NNN(NNN ···rrr)

= −dxf –1rrry − dyf –1rrrx + dNNN

which is precisely the result (11) asserted by Rogers & Schief.

Bringing to the Gauss equation

rrrxy = Γ 1
12rrrx + Γ 2

12rrry + fNNN (4)2

the descriptions of Γ 1
12 and Γ 2

12 provided at (9), we have

rrrxy = − 1
4

[
log(−K)

]
y
rrrx − 1

4

[
log(−K)

]
x
rrry + fNNN

But by (11)
fNNN = (f/d)rrr + (dx/d)rrry + (dy/d)rrrx

= (f/d)rrr + 1
4

[
log d4

]
y
rrrx + 1

4

[
log d4

]
x
rrry
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so
rrrxy − (f/d)rrr = − 1

4

[
log(−K/d4)

]
y
rrrx − 1

4

[
log(−K/d4)

]
x
rrry (13)

This result pertains to every asymptotically parameterized hyperbolic surface.

Tzitzeica’s fundamental assumption, and someconsequences. Tzitzeica surfaces
arise from setting

rrrxy − (f/d)rrr = 0 (14.1)

which by (13) entails

−K/d4 = constant = c2 > 0 (14.2)

Let (14.1) be abbreviated

rrrxy = hrrr with h = f/d (15)

It remains to expoit the information supplied by the remaining Gauss
equations (4)1,3, which by (12) can be written

rrrxx = −fΓ 1
11YYY − fΓ 2

11XXX

rrr yy = −fΓ 1
22YYY − fΓ 2

22XXX

and by the biorthogonality of {XXX,YYY } and {NNNx,NNNy} give

Γ 1
11 = −f –1rrrxx···NNNy Γ 2

11 = −f –1rrrxx···NNNx

Γ 1
22 = −f –1rrryy···NNNy Γ 2

22 = −f –1rrr yy···NNNx

}
(16)

from which we must press the juice. Differentiation of rrrxx···NNN = e = 0 gives
rrrxx···NNNy + rrrxxy···NNN = rrrxx···NNNy + (hrrr)x···NNN = 0 whence

Γ 1
11 = f –1(hrrr)x···NNN

= f –1(hxd + hrrrx···NNN) : f –1 = 1/hd, rrrx⊥ NNN

= hx/h (17.1)
= (log h)x

Arguing similarly from rrryy···NNN = g = 0 we have

Γ 2
22 = hy/h (17.2)

= (log h)y

Rogers & Schief assert also (without proof) that

Γ 2
11 = a(x)

h
Γ 1

22 = b(y)
h

(17.3)

which entail (hΓ 2
11)y = (hΓ 1

22)x and by (16) become
(rrryy···NNNy

d

)

y
= 0

(
rrrxx···NNNx

d

)

x
= 0 (17#)
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But these are equations that I have been thus far unable to verify, unable to
recover from the available material.11 I proceed on the essential assumption
that equations (17.3) are correct. . . to see where it takes me and in the hope
that the light may someday dawn.

Returning with the fundamental assumption (15) and equations (17)—
which descend from (15) and the Weingarten equations—to the (4), we find
that the Gauss equations for asymptotically parameterized Tzitzeica surfaces
can be written

rrrxx = (hx/h)rrrx + (a(x)/h)rrry (18.1)
rrrxy = hrrr (18.2)
rrryy = (hy/h)rrry + (b(y)/h)rrrx (18.3)

The first pair of equations supplies

rrrxxy = (hx/h)yrrrx + (hx/h)hrrr + (a/h)yrrry + (a/h)rrryy

= (hx/h)yrrrx + (hx/h)hrrr + (a/h)yrrry + (a/h)[(hy/h)rrry + (b/h)rrrx]

= [(hx/h)y + ab/h2]rrrx + hxrrr + a[(1/h)y + hy/h2]rrry

rrrxyx = hxrrr + hrrrx

which are consistent if and only if

[(hx/h)y + ab/h2] = h (19.11)
[(1/h)y + hy/h2] = 0 (19.21)

A similar argument shows the second pair of equations to be consistent if and
only if

[(hy/h)x + ab/h2] = h (19.12)
[(1/h)x + hx/h2] = 0 (19.22)

Equations (19.2) are valid as elementary identities, so impose no constraint
upon h. Equations (19.1) are seen by

(hx/h)y =
hhxy − hxhy

h2

(hy/h)x =
hhyx − hyhx

h2





= (log h)xy

11 Which I take to be

rrrx···NNN = rrry···NNN = 0 : normality of NNN

e = rrrxx···NNN = 0, g = rrryy···NNN = 0 : structure of H

rrrx···NNNx = rrry···NNNy = 0
rrrx···NNNy = rrry···NNNx = −f

}
: biorthogonalty

together with the assumed relation (15).
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to be identical, and lead to the conclusion that the Gauss equations (18) are
integrable if and only if h(x, y) is a solution of the non-linear partial differential
equation

(log h)xy = h − a(x)b(y)/h2 (20)

Optimally regauged asymptotic parameters. Given the {x, y}-parameterized
description rrr(x, y) of a surface Σ, the equations

x = constant, y = constant

inscribe curves Cx and Cy on Σ. When the parameters are rescaled

x = x(u), y = y(v)

the members of the populations {Cx}, {Cy} acquire new names {Cu}, {Cv}
but the populations themselves remain unchanged. All of which pertains to
arbitrary parameterizations, and to asymptotic parameterizations in particular.
It has been established elsewhere12 that

G(u, v) = J TG(x, y)J
∣∣∣
x→x(u),y→y(v)

H(u, v) = J TH(x, y)J
∣∣∣
x→x(u),y→y(v)

J =
(

xu xv

yu yv

)
=

(
xu 0
0 yv

)

In the asymptotic case we therefore have
(

0 f̄(u, v)
f̄(u, v) 0

)
=

(
0 f(x, y)xuyv

f(x, y)xuyv 0

)

x→x(u),y→y(v)

The parameter d = rrr ···NNN is intrinsic (parameterization-independent); h ≡ f/d
therefore transforms like f :

h̄(u, v) = h(x, y)xuyv

∣∣∣
x→x(u),y→y(v)

Thus prepared, we look to the response of the Gauss equations (18) to such
rescaling. Immediately

rrruv = rrrxyxuyv = hxuyv rrr = h̄rrr

A more elaborate argument gives

rrruu = rrrxxxuxu

= {(hx/h)rrrx + (a(x)/h)rrry}xuxu

=
(h̄uxvy)uux

h̄uxvy
(rrruux)xuxu + a(x)

h̄uxvy
(rrrvvy)xuxu

12 “Parameter transformations vs. basis transformations,” (June, 2016).
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But

(h̄uxvy)uux

h̄uxvy
(rrruux)xuxu = (h̄u/h̄)rrru +

(uxvy)u

uxvy
rrru

= (h̄u/h̄)rrru by (uxvy)u = vy(uu)x = 0

and

a(x)
h̄uxvy

(rrrvvy)xuxu = (ā(u)/h̄)rrrv

ā(u) ≡ a(x(u)) · xu(u)3

So we have the rescaled equations

rrruu = (h̄x/h̄)rrru + (ā(u)/h̄)rrrv

rrruv = h̄rrr

rrrvv = (h̄y/h̄)rrrv + ( b̄(v)/h̄)rrru

and are free to adopt a scaling x → u(x), y → v(y) such that

ā(u) = λ, b̄(v) = λ–1 : λ any non-zero constant

This done, the asymptotically parameterized Gauss equations (18) assume the
“canonical” form13

rrrxx = (hx/h)rrrx + (λ/h)rrry

rrrxy = hrrr

rrryy = (hy/h)rrry + (λ–1/h)rrrx





(20)

The associated integrability condition reads (for all λ)

(log h)xy = h − 1
h2

(21)

This nonlinear partial differential equation plays within the theory of Tzitzeica
surfaces precisely the role played by the nonlinear sine-Gordon equation within
the theory of pseudospheric surfaces.

The dual of a Tzitzeica surface. Let

sss = −rrrx× rrry

h
, which is parallel to NNN (22)

13 Here I reinstate {x, y} as the names of the asymptotic parameters. Rogers
& Schief remark that equations (20) provide an instance of a “Lax triad.”
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Rogers & Schief assert that if rrr(x, y) satisfies the triad (20) then sss(x, y) satisfies
the “dual” or “adjoint” triad that results from reversing the sign of λ. We look
to the demonstration. We by (22) have

sssx =
−h(rrrx× rrry)x + hx(rrrx× rrry)

h2

=
−h[hxh–1rrrx + λh–1rrry] × rrry − hrrrx× [hrrr] + hx(rrrx× rrry)

h2

= hhxsss − λ000 − h2rrrx× rrr + hx[−hsss]
h2

= −rrrx× rrr (23.1)

and by a similar argument
sssy = −rrr × rrry (23.2)

Therefore

sssxx = −rrrxx× rrr − rrrx× rrrx

= −[hxh–1rrrx + λh–1rrry] × rrr − 000
= hxh–1sssx − λh–1sssy (24.1)

sssxy = −rrrxy× rrr − rrrx× rrry

= −hrrr × rrr + hsss

= hsss (24.2)
sssyy = −rrry× rrry − rrr × rrryy

= − 000 − rrr × [hyh–1rrry + λ–1h–1rrrx]
= hyh–1sssy − λ–1h–1sssx (24.3)

The argument is elementary, but provides no insight into why it is “obvious/
inevitable” that the substitutions

rrr → sss = (rrry× rrrx)/h

rrrx → sssx = rrr × rrrx

rrry → sssy = rrry × rrr

send the description rrr(x, y) of one Tzitzeica surface Σ over into the description
sss(x, y) of another, Σdual. Rogers & Schief remark that equations (23) are called
“Lelieuvre formulae,”14 and were noted already by Jonas. We observe finally
that

(rrr ···sss)x = rrrx···sss + rrr ···sssx

= −h–1rrrx···(rrrx× rrry) + rrr ···(rrr × rrrx)
= 0

(rrr ···sss)y = 0

14 See L. P. Eisenhart, Differential Geometry of Curves & Surfaces (1909),
§79, pages 193–195; §172, pages 417–420.
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by a familiar property of the triple scalar product:

aaa···(bbb × ccc) =

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
= 0 unless {aaa, bbb, ccc} are linearly independent

So we have
rrr ···sss = constant (25)

Example: the unit hexenhut . It is one thing to establish the integrability of
the Gauss equations (20) and quite another—given that h(x, y) is a solution of
(21)—actually to integrate them: that is an assignment that we are not yet in
position to undertake. We do, however, have in hand one certified Tzitzeica
surface: Jonas’ hexenhut , which I have seen referred to (on grounds that I have
yet to establish, but of which the plausibility will soon emerge) as the “simplest”
Tzitzeica surface. My object here will be to indicate what the general results
developed above have to say in this particular case.

Sebbar’s cubic surface x3 + y3 + z3 − 3xyz = 1 is seen when plotted to
be coaxial with the vector (1, 1, 1). The rotation that brings that vector to the
vector (0, 0,

√
3 ) brings Sebbar’s cubic to the form15

z(x2 + y2) = α2 : α2 = 2
3
√

3

which clearly describes a surface of revolution, of which

rrr(u, v) =




r(u) cos v
r(u) sin v

u



 : r(u) = α/
√

u

provides a natural parameterization. The differential geometry latent in rrr(u, v),
particularly as it relates to the Tzitzeica property of that surface, has been
discussed in several previous essays.16 Here I look to the “unit hexenhut,” that
results from setting α = 1:

rrr(u, v) =




u− 1

2 cos v
u− 1

2 sin v
u



 (26)

For the most part, the theory of Tzitzeica surfaces presumes asymptotic
parameterization, but the intrinsic properties of surfaces Σ (such, for example,
as the numerical values assumed by {K, d } at a specified point P , as opposed
to the functions that describe them) must be parameterization-independent.
We are free, therefore, to use the {u, v}-parameterization (26) to demonstrate

15 See “Differential geometry of some surfaces in 3-space,” (December 2015),
page 21.

16 See, for example, pages 2–4 in“Geodesics on the hexenhut,”(January, 2016).
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that the unit hexenhut Σ possesses the intrinsic property (14.2), the defining
feature of Tzitzeica surfaces:

−K/d4 = constant, the same for all points P on Σ

Quick (Mathematica -assisted) calculation supplies

g11(u, v) = E = 1 + 1
4u3

g12(u, v) = g21(u, v) = F = 0

g21(u, v) = G = 1
u

NNN(u, v) = − 1√
1 + 4u3




2u

2
3 cos v

2u
2
3 sin v
1





h11(u, v) = e = − 3
2u

√
1 + 4u3

h12(u, v) = h21(u, v) = f = 0

h22(u, v) = g = + 2u√
1 + 4u3

det G(u, v) = 1 + 4u3

4u4

det H(u, v) = − 3
1 + 4u2

K(u, v) = det H(u, v)
det G(u, v)

= − 12u4

(1 + 4u3)2

d(u, v) = rrr(u, v)···NNN(u, v) = − 3u√
1 + 4u3

whence finally
−K/d4 = 12

34
= 4

27
≡ c2 : all u, v

Curiously, c2 = 4
27 =

(
2

3
√

3

)2 = α4. That G(u, v) and H(u, v) are both diagonal
can come as no surprise, for it was shown at (14) in Part 1 that F = f = 0
is a property of every naturally parameterized surface of revolution. The
point acquires interest from the established fact17 that for every asymptotically
parameterized hyperbolic surface —whether or not it be a surface of revolution
—H(x, y) is antidiagonal.

We look now to the asymptotic parameterization of the unit hexenhut.18
From

dududu···H(u, v)dududu = e(du)2 + g(dv)2 = 0

17 See “Asymptotic parameterization of the curvature matrix,” (June, 2016).
18 See Part 1, pages 6 & 9; “Geodesics on the hexenhut,” (January 2016),

page 3 and the essay cited there.
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we find that the functions v(u) that describe {u, v}-parameterized asymptotic
curves on the unit hexenhut satisfy

dv
du = ±

√
−e/g = ±βu–1 : β =

√
3

2

which gives
v(u) = ±β log(u/u0)

Which is to say: we have

v + β log u = x (27.1)
v − β log u = y (27.2)

where (27.1) describes asymptotic curves on one helicity, (27.2) describes curves
of the opposite helicity, and where {x, y} are the “asymptotic coordinates” that
serve to give names to such curves; i.e., to distinguish each from all others.
Inversely,

u = exp
(x − y

2β

)

v = x + y
2

(28)

which when introduced into (26) give this asymptotic parameterization of the
unit hexenhut:

rrr =




exp y−x

4β cos x+y
2

exp y−x
4β sin x+y

2

exp x−y
2β



 (29)

Working from (29), we (with the substantial assistance of Mathematica) find

g11 = g22 =
(4β2 + 1) exp y−x

2β + 4exp x−y
β

16β2

g12 = g21 =
(4β2 − 1) exp y−x

2β − 4exp x−y
β

16β2

(30.1)

so G(x, y)—which could alternatively have been obtained from

G(x, y) = J TG(u, v)J
∣∣∣
u→u(x,y),v→v(x,y)

(30.2)

J =
(

ux uy

vx vy

)
=

( 1
2β exp(x−y

2β ) − 1
2β exp(x−y

2β )
1
2

1
2

)

—does not share the diagonal structure of G(u, v). From (30) we get

det G(x, y) = (g11)2 − (g12)2

= det G(u, v) · (det J)2

=
4 exp(x−y

2β ) + exp(y−x
β )

16β 2

= 1
12

[
4 exp(x−y

2β ) + exp(y−x
β )

]
(31)
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Working similarly from

H(x, y) = J TH(u, v)J
∣∣∣
u→u(x,y),v→v(x,y)

we find

h11 = h22 =
[
8β 2

√
exp(y−x

β ) + 4 exp(x−y
2β )

]–1
(4β2 − 3)

= 0 by β = 1
2

√
3

h12 = h21 =
[
8β 2

√
exp(y−x

β ) + 4 exp(x−y
2β )

]–1
(4β2 + 3)

(32)

so H(x, y), which does not share the diagonal structure of H(u, v), has in fact the
antidiagonal structure that we know17 to be characteristic of all asymptotically
parameteried hyperbolic surfaces. From (32) we have

det H(x, y) = −(h12)2

= det H(u, v) · (det J)2

and so are led respectively to results

det H(x, y) = −
[
4 exp(x−y

2β ) + exp(y−x
β )

]–1 ·
{

(4β 2 + 3)/64β 4

3/4β 2

that are identical by β = 1
2

√
3, and give simply

det H(x, y) = −
[
4 exp(x−y

2β ) + exp(y−x
β )

]–1 (33)

From (31) and (33) we obtain

K(x, y) = det H(x, y)
det G(x, y)

= 12[
4 exp(x−y

2β ) + exp(y−x
β )

]2 (34)

The numerical value of the Gaussian curvature at any point P on Σ is intrinsic,
the same whatever parameters are used to address that point, which is to say:
curvature transforms as a scalar, in which connection we are gratified to observe
that

= K(u, v)
∣∣∣
u→u(x,y), v→v(x,y)

A similar remark pertains to Tzitzeica’s parameter d, so we have

d(x, y) = d(u, v)
∣∣∣
u→u(x,y), v→v(x,y)

= − 3
[
4 exp(x−y

2β ) + exp(y−x
β )

] 1
2

(35)

which gives back

−K/d4 = 12
34 = 4

27 : constant on the unit hexenhut

and places us in position to construct
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h(x, y) = f/d = h12/d = [4β2 + 3)/8β 2]/
√

etc.
−3/

√
etc.

= − 1
3 (36)

Working from (29) and (36), we verify19 that

rrrxy = hrrr : h = − 1
3

which is precisely the characteristic relation (15) stipulated by Tzitzeica. The
remaining Gauss equations (18) are brought by (36) to the form

rrrxx = −3a(x)rrry

rrryy = −3b(y)rrrx
(37)

of which the first is found (again use β = 1
2

√
3) to be satisfied if and only if we

set a(x) = 1/3
√

3. The integrability condition (20) then reads

0 = h − a(x)b(y)/h2 = (− 1
3 ) −

(
b(y)/3

√
3

)
/(− 1

3 )2 = − 1
3 −

√
3 b(y)

which supplies b(y) = −1/3
√

3, whereupon the second of the Gauss equations
(37) is found also to be satisfied.

At this point the Gauss equations

rrrxx = Γ 1
11rrrx + Γ 2

11rrry

rrrxy = Γ 1
12rrrx + Γ 2

12rrry + f NNN

rrryy = Γ 1
22rrrx + Γ 2

22rrry





(4)

of the asymptotically parameterized unit hexenhut have assumed the form

rrrxx = 0 rrrx − 1√
3
rrry

rrrxy = Γ 1
12rrrx + Γ 2

12rrry + f NNN

= − 1
3 rrr : stipulated at (15) by Tzitzeica

rrryy = 1√
3
rrrx + 0 rrry

from which we infer Γ 1
11 = Γ 2

22 = 0,Γ 1
22 = −Γ 2

11 = 1√
3
, as might have been

obtained directly from (17) , or alternatively: use (30.1) to write

E = G =
(4β2 + 1) exp y−x

2β + 4exp x−y
β

16β2

F =
(4β2 − 1) exp y−x

2β − 4exp x−y
β

16β2

19 Use
1 + 4β 2

16β 2
= 1

4β 2
= 1

3
by β = 1

2

√
3
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and introduce those expressions into (7), which by E = G read

Γ 1
11 = g–1

{
1
2EEx − FFx + 1

2FEy

}

Γ 2
11 = g–1

{
− 1

2FEx + EFx − 1
2EEy

}

Γ 1
22 = g–1

{
− 1

2FEy + EFy − 1
2EEx

}

Γ 2
22 = g–1

{
1
2EEy − FFy + 1

2FEx

}

with g = E2− F 2. Mathematica promptly supplies the results in question.

We look now to the parameter rescaling {x → u(x), y → v(y)} that brings
the hexenhut equations to “canonical form.” We established on page 10 that

rrrxx = (a/h)rrry

rrrxy = hrrr

rrryy = (b/h)rrrx

−−−−−−−−−−−−→
transforms to

rrruu = (ax3
u/hxuyv)rrrv

rrruv = (hxuyv)rrr

rrrvv = (by3
v/hxuyv)rrru

and want to achieve ax3
u = λ, by3

v = λ–1. Since {a, b,λ} are in this instance
constants the functions x(u) and y(v) must be linear. Write

x(u) = ku, y(v) = 'v

Then ak3 = λ, b'3 = λ–1 give

k = (λ/a)
1
3 = (λ3

3
2 )

1
3 =

√
3λ+ 1

3

' = (1/λb)
1
3 = (−3

3
2 /λ)

1
3 = −

√
3λ− 1

3

whence h̄ = hxuyv = − 1
3k '. So

h̄ = 1 : simplest possible solution of (log h̄)uv = h̄ − h̄−2 (38.1)

and the canonical hexenhut equations read

rrruu = λ rrrv

rrruv = rrr

rrrvv = λ–1rrru

(38.2)

—than which nothing could be sweeter! Many of the preceding results—but
particularly this one—lend plausibility to the claim that “Jonas’ hexenhut is the
simplest of all Tzitzeica surfaces. . . though we encountered serious whitewater
in the computational stream, and complications (of which Mathematica takes
no notice) intrude on introduction of the canonical asymptotic coordinates:

rrr(x, y)
∣∣∣
x→ku, y→"v

Define sss = −rrru× rrrv. A simplified reprise of the arguments that gave (23)
and (24) gives

sssu = −rrru× rrr

sssv = rrrv × rrr
(39.1)
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sssuu = −λsssv

sssuv = sss

sssvv = −λ–1sssu

(39.2)

Were we to define ttt = −sssu× sssv we would be led to ttt -equations that mimic
(38.2). But20

ttt = −sssu× sssv = (rrru× rrr) × (rrrv× rrr)
= (rrrurrr rrr)rrrv − (rrrurrr rrrv)rrr
= [(rrru× rrrv)···rrr ]rrr

We draw now on a fact upon which we have not previouisly had occasion to
remark; from the description (29) of rrr(x, y) if follows by computation that

(rrrx× rrry)···rrr = −4/3β = − 1
2

√
3 = −β : a constant!

Therefore
(rrru× rrrv)···rrr = [(rrrx× rrry)···rrr ]xuyv = −βk' = 3β

So ttt = 3βrrr. The linear system of ttt -equations differs from the rrr -system (which
was our point of departure) only by an irrelevant multiplicative constant. It is
for this reason that the rrr -system and the sss-system can be said to be “dual:”
rrr(u, v) provides the canonical description of the unit hexenhut Σ, and sss(u, v)
the canonical description of Σdual. Reverting (for merely typographic reasons)
to our original asymptotic parameters {x, y}, we see from

rrr(x, y) =




exp y−x

4β cos x+y
2

exp y−x
4β sin x+y

2

exp x−y
2β



 sss(x, y) =





1
2β exp x−y

4β cos x+y
2

1
2β exp x−y

4β sin x+y
2

1
4β exp y−x

2β





that rrr(x, y) and its dual are structurally quite similar. It is therefore not
surprising that the associated surfaces are also similar; Σdual looks (because
1
2β = 0.57735 < 1, 1

4β = 0.28867 < 1) like an emaciated hexenhut.

Where does that leave us? As was remarked already on page 11, it is one thing
to establish the integrability of the Gauss equations (20) and quite another—
given that h(x, y) is a solution of (21)—actually to integrate them. That is an
issue that I reserve for a separate essay (Part 3 in this series).

20 Use the identity (aaa × bbb) × (ccc × ddd) = (aaabbbddd)ccc − (aaabbbccc)ddd and properties of the
triple scalar product to which reference was made on page 12.


